Joint quantum nondemolition measurements of qubits: beyond the mean-field theory


الملخص بالإنكليزية

We propose an approach to nondestructively detect $N$ qubits by measuring the transmissions of a dispersively-coupled cavity. By taking into account all the cavity-qubits quantum correlations (i.e., beyond the usual coarse-grained/mean-field approximations), it is revealed that for an unknown normalized $N$-qubit state $|psi_N>=sum_{k=0}^{2^N-1}beta_k|k>_N$, each detected peak in the cavity transmitted spectra marks one of the basis states $|k>_N$ and the relative height of such a peak is related to the corresponding superposed-probability $|beta_k|^2$. Our results are able to unambiguously account for the intriguing multi-peak structures of the spectra observed in a very recent circuit-quantum-electrodynamics experiment [Phys. Rev. A {bf 81}, 062325 (2010)] with two superconducting qubits.

تحميل البحث