Lattice study of light scalar tetraquarks with I=0,2,1/2,3/2: are sigma and kappa tetraquarks?


الملخص بالإنكليزية

We investigate whether the lightest scalar mesons sigma and kappa have a large tetraquark component, as is strongly supported by many phenomenological studies. A search for possible light tetraquark states with J^PC=0^++ and I=0, 2, 1/2, 3/2 on the lattice is presented. We perform the two-flavor dynamical simulation with Chirally Improved quarks and the quenched simulation with overlap quarks, finding qualitative agreement between both results. The spectrum is determined using the generalized eigenvalue method with a number of tetraquark interpolators at the source and the sink, and we omit the disconnected contractions. The time-dependence of the eigenvalues at finite temporal extent of the lattice is explored also analytically. In all the channels, we unavoidably find lowest scattering states pi(k)pi(-k) or K(k)pi(-k) with back-to-back momentum k=0, 2*pi/L,... However, we find an additional light state in the I=0 and I=1/2 channels, which may be interpreted as the observed resonances sigma and kappa with a sizable tetraquark component. In the exotic repulsive channels I=2 and I=3/2, where no resonance is observed, we find no light state in addition to the scattering states.

تحميل البحث