Polaron-like effects in a one-dimensional optical lattice


الملخص بالإنكليزية

We study a highly imbalanced Fermi gas in a one-dimensional optical lattice from the polaronic point of view. The time-evolving block decimationg algorithm is used to calculate the ground state and dynamics of the system. We find qualitatively similar polaronic behaviour as in the recent experiment by Schirotzek et al. cite{Schirotzek2009a} where radio-frequency spectroscopy was used to observe polarons in three-dimensional space. In the weakly interacting limit our exact results are in excellent agreement with a polaron ansatz, and in the strongly interacting limit the results match with an approximative solution of the Bethe ansatz, suggesting a crossover from a quasiparticle to a charge-density excitation regime.

تحميل البحث