Electronic structure of superconducting KC$_8$ and non-superconducting LiC$_6$ graphite intercalation compounds: Evidence for a graphene-sheet-driven superconducting state


الملخص بالإنكليزية

We have performed photoemission studies of the electronic structure in LiC$_6$ and KC$_8$, a non-superconducting and a superconducting graphite intercalation compound, respectively. We have found that the charge transfer from the intercalant layers to graphene layers is larger in KC$_8$ than in LiC$_6$, opposite of what might be expected from their chemical composition. We have also measured the strength of the electron-phonon interaction on the graphene-derived Fermi surface to carbon derived phonons in both materials and found that it follows a universal trend where the coupling strength and superconductivity monotonically increase with the filling of graphene $pi^{ast}$ states. This correlation suggests that both graphene-derived electrons and graphene-derived phonons are crucial for superconductivity in graphite intercalation compounds.

تحميل البحث