Temporal Monitoring of Non-resonant Feeding of Semiconductor Nanocavity Modes by Quantum Dot Multiexciton Transitions


الملخص بالإنكليزية

We experimentally investigate the non-resonant feeding of photons into the optical mode of a zero dimensional nanocavity by quantum dot multiexciton transitions. Power dependent photoluminescence measurements reveal a super-linear power dependence of the mode emission, indicating that the emission stems from multiexcitons. By monitoring the temporal evolution of the photoluminescence spectrum, we observe a clear anticorrelation of the mode and single exciton emission; the mode emission quenches as the population in the system reduces towards the single exciton level whilst the intensity of the mode emission tracks the multi-exciton transitions. Our results lend strong support to a recently proposed mechanism mediating the strongly non-resonant feeding of photons into the cavity mode.

تحميل البحث