Euclidean random matrix theory: low-frequency non-analyticities and Rayleigh scattering


الملخص بالإنكليزية

By calculating all terms of the high-density expansion of the euclidean random matrix theory (up to second-order in the inverse density) for the vibrational spectrum of a topologically disordered system we show that the low-frequency behavior of the self energy is given by $Sigma(k,z)propto k^2z^{d/2}$ and not $Sigma(k,z)propto k^2z^{(d-2)/2}$, as claimed previously. This implies the presence of Rayleigh scattering and long-time tails of the velocity autocorrelation function of the analogous diffusion problem of the form $Z(t)propto t^{(d+2)/2}$.

تحميل البحث