Large deviations for slow-fast stochastic partial differential equations


الملخص بالإنكليزية

A large deviation principle is derived for stochastic partial differential equations with slow-fast components. The result shows that the rate function is exactly that of the averaged equation plus the fluctuating deviation which is a stochastic partial differential equation with small Gaussian perturbation. This also confirms the effectiveness of the approximation of the averaged equation plus the fluctuating deviation to the slow-fast stochastic partial differential equations.

تحميل البحث