How the Polyakov loop and the regularization affect strangeness and restoration of symmetries at finite T


الملخص بالإنكليزية

The effects of the Polyakov loop and of a regularization procedure that allows the presence of high momentum quark states at finite temperature is investigated within the Polyakov-loop extended Nambu--Jona-Lasinio model. The characteristic temperatures, as well as the behavior of observables that signal deconfinement and restoration of chiral and axial symmetries, are analyzed, paying special attention to the behavior of strangeness degrees of freedom. We observe that the cumulative effects of the Polyakov loop and of the regularization procedure contribute to a better description of the thermodynamics, as compared with lattice estimations. We find a faster partial restoration of chiral symmetry and the restoration of the axial symmetry appears as a natural consequence of the full recovering of the chiral symmetry that was dynamically broken. These results show the relevance of the effects of the interplay among the Polyakov loop dynamics, the high momentum quark sates and the restoration of the chiral and axial symmetries at finite temperature.

تحميل البحث