The Comoving Infrared Luminosity Density: Domination of Cold Galaxies across 0<z<1


الملخص بالإنكليزية

In this paper we examine the contribution of galaxies with different infrared (IR) spectral energy distributions (SEDs) to the comoving infrared luminosity density, a proxy for the comoving star formation rate (SFR) density. We characterise galaxies as having either a cold or hot IR SED depending upon whether the rest-frame wavelength of their peak IR energy output is above or below 90um. Our work is based on a far-IR selected sample both in the local Universe and at high redshift, the former consisting of IRAS 60um-selected galaxies at z<0.07 and the latter of Spitzer 70um selected galaxies across 0.1<z<1. We find that the total IR luminosity densities for each redshift/luminosity bin agree well with results derived from other deep mid/far-IR surveys. At z<0.07 we observe the previously known results: that moderate luminosity galaxies (L_IR<10^11 Lsun) dominate the total luminosity density and that the fraction of cold galaxies decreases with increasing luminosity, becoming negligible at the highest luminosities. Conversely, above z=0.1 we find that luminous IR galaxies (L_IR>10^11 Lsun), the majority of which are cold, dominate the IR luminosity density. We therefore infer that cold galaxies dominate the IR luminosity density across the whole 0<z<1 range, hence appear to be the main driver behind the increase in SFR density up to z~1 whereas local luminous galaxies are not, on the whole, representative of the high redshift population.

تحميل البحث