Hubble Space Telescope Observations of a Spectacular New Strong-lensing Galaxy Cluster - MACSJ1149.5+2223 at z=0.544


الملخص بالإنكليزية

We present Advanced Camera for Surveys observations of MACSJ1149.5+2223, an X-ray luminous galaxy cluster at z=0.544 discovered by the Massive Cluster Survey. The data reveal at least seven multiply-imaged galaxies, three of which we have confirmed spectroscopically. One of these is a spectacular face-on spiral galaxy at z=1.491, the four images of which are gravitationally magnified by ~8<mu<~23. We identify this as an L* (M_B=-20.7), disk-dominated (B/T<~0.5) galaxy, forming stars at ~6Msol/yr. We use a robust sample of multiply-imaged galaxies to constrain a parameterized model of the cluster mass distribution. In addition to the main cluster dark matter halo and the bright cluster galaxies, our best model includes three galaxy-group-sized halos. The relative probability of this model is P(N_halo=4)/P(N_halo<4)>=10^12 where N_halo is the number of cluster/group-scale halos. In terms of sheer number of merging cluster/group-scale components, this is the most complex strong-lensing cluster core studied to date. The total cluster mass and fraction of that mass associated with substructures within R<=500kpc, are measured to be M_tot=(6.7+/-0.4)x10^14Msol and f_sub=0.25+/-0.12 respectively. Our model also rules out recent claims of a flat density profile at >~7sigma confidence, thus highlighting the critical importance of spectroscopic redshifts of multiply-imaged galaxies when modeling strong lensing clusters. Overall our results attest to the efficiency of X-ray selection in finding the most powerful cluster lenses, including complicated merging systems.

تحميل البحث