In the experiments on stress-induced phase transitions in SMA strips, several interesting instability phenomena have been observed, including a necking-type instability, a shear-type instability and an orientation instability. By using the smallness of the maximum strain, the thickness and width of the strip, we use a methodology, which combines series expansions and asymptotic expansions, to derive the asymptotic normal form equations, which can yield the leading-order behavior of the original three-dimensional field equations. Our analytical results reveal that the inclination of the phase front is a phenomenon of localization-induced buckling (or phase-transition-induced buckling as the localization is caused by the phase transition). Due to the similarities between the development of the Luders band in a mild steel and the stress-induced transformations in a SMA, the present results give a strong analytical evidence that the former is also caused by macroscopic effects instead of microscopic effects. Our analytical results also reveal more explicitly the important roles played by the geometrical parameters.