Graphene Heat Spreaders for Thermal Management of Nanoelectronic Circuits


الملخص بالإنكليزية

Graphene was recently proposed as a material for heat removal owing to its extremely high thermal conductivity. We simulated heat propagation in silicon-on-insulator circuits with and without graphene lateral heat spreaders. Numerical solutions of the heat propagation equations were obtained using the finite element method. The analysis was focused on the prototype silicon-on-insulator circuits with the metal-oxide-semiconductor field-effect transistors. It was found that the incorporation of graphene or few-layer graphene layers with proper heat sinks can substantially lower the temperature of the localized hot spots. The maximum temperature in the transistor channels was studied as function of graphenes thermal conductivity and the thickness of the few-layer-graphene. The developed model and obtained results are important for the design of graphene heat spreaders and interconnects.

تحميل البحث