Continuing the program begun by the authors in a previous paper, we develop an exact low-density expansion for the random minimum spanning tree (MST) on a finite graph, and use it to develop a continuum perturbation expansion for the MST on critical percolation clusters in space dimension d. The perturbation expansion is proved to be renormalizable in d=6 dimensions. We consider the fractal dimension D_p of paths on the latter MST; our previous results lead us to predict that D_p=2 for d>d_c=6. Using a renormalization-group approach, we confirm the result for d>6, and calculate D_p to first order in epsilon=6-d for dleq 6 using the connection with critical percolation, with the result D_p = 2 - epsilon/7 + O(epsilon^2).