The yrast sequence of the neutron-rich dysprosium isotope 168Dy has been studied using multi-nucleon transfer reactions following collisions between a 460-MeV 82Se beam and a 170Er target. The reaction products were identified using the PRISMA magnetic spectrometer and the gamma rays detected using the CLARA HPGe-detector array. The 2+ and 4+ members of the previously measured ground state rotational band of 168Dy have been confirmed and the yrast band extended up to 10+. A tentative candidate for the 4+ to 2+ transition in 170Dy was also identified. The data on these nuclei and on the lighter even-even dysprosium isotopes are interpreted in terms of Total Routhian Surface calculations and the evolution of collectivity in the vicinity of the proton-neutron valence product maximum is discussed.