Outflow Feedback Regulated Massive Star Formation in Parsec-Scale Cluster Forming Clumps


الملخص بالإنكليزية

(Abridged) We investigate massive star formation in turbulent, magnetized, parsec-scale clumps of molecular clouds including protostellar outflow feedback using Enzo-based MHD simulations with accreting sink particles and effective resolution $2048^3$. We find that, in the absence of regulation by magnetic fields and outflow feedback, massive stars form readily in a turbulent, moderately condensed clump of $sim 1,600$ solar masses, along with a cluster of hundreds of lower mass stars. The massive stars are fed at high rates by (1) transient dense filaments produced by large-scale turbulent compression at early times, and (2) by the clump-wide global collapse resulting from turbulence decay at late times. In both cases, the bulk of the massive stars mass is supplied from outside a 0.1 pc-sized core that surrounds the star. In our simulation, the massive star is clump-fed rather than core-fed. The need for large-scale feeding makes the massive star formation prone to regulation by outflow feedback, which directly opposes the feeding processes. The outflows reduce the mass accretion rates onto the massive stars by breaking up the dense filaments that feed the massive star formation at early times, and by collectively slowing down the global collapse that fuel the massive star formation at late times. The latter is aided by a moderate magnetic field of strength in the observed range. We conclude that the massive star formation in our simulated turbulent, magnetized, parsec-scale clump is outflow-regulated and clump-fed (ORCF for short). An important implication is that the formation of low-mass stars in a dense clump can affect the formation of massive stars in the same clump, through their outflow feedback on the clump dynamics.

تحميل البحث