The classical bond-fluctuation model (BFM) is an efficient lattice Monte Carlo algorithm for coarse-grained polymer chains where each monomer occupies exclusively a certain number of lattice sites. In this paper we propose a generalization of the BFM where we relax this constraint and allow the overlap of monomers subject to a finite energy penalty $overlap$. This is done to vary systematically the dimensionless compressibility $g$ of the solution in order to investigate the influence of density fluctuations in dense polymer melts on various s tatic properties at constant overall monomer density. The compressibility is obtained directly from the low-wavevector limit of the static structure fa ctor. We consider, e.g., the intrachain bond-bond correlation function, $P(s)$, of two bonds separated by $s$ monomers along the chain. It is shown that the excluded volume interactions are never fully screened for very long chains. If distances smaller than the thermal blob size are probed ($s ll g$) the chains are swollen acc ording to the classical Fixman expansion where, e.g., $P(s) sim g^{-1}s^{-1/2}$. More importantly, the polymers behave on larger distances ($s gg g$) like swollen chains of incompressible blobs with $P(s) si m g^0s^{-3/2}$.