In real life, media information has time attributes either implicitly or explicitly known as temporal data. This paper investigates the usefulness of applying Bayesian classification to an interval encoded temporal database with prioritized items. The proposed method performs temporal mining by encoding the database with weighted items which prioritizes the items according to their importance from the user perspective. Naive Bayesian classification helps in making the resulting temporal rules more effective. The proposed priority based temporal mining (PBTM) method added with classification aids in solving problems in a well informed and systematic manner. The experimental results are obtained from the complaints database of the telecommunications system, which shows the feasibility of this method of classification based temporal mining.