An atomic Bose-Einstein condensate (BEC) is often described as a macroscopic object which can be approximated by a coherent state. This, on the surface, would appear to indicate that its behavior should be close to being classical. In this paper, we clarify the extent of how classical a BEC is by exploring the semiclassical equations for BECs under the mean field Gaussian approximation. Such equations describe the dynamics of a condensate in the classical limit in terms of the variables < x > and < p > as well as their respective variances. We compare the semiclassical solution with the full quantum solution based on the Gross-Pitaevskii Equation (GPE) and find that the interatomic interactions which generate nonlinearity make the system less classical. On the other hand, many qualitative features are captured by the semiclassical equations, and the equations to be solved are far less computationally intensive than solving the GPE which make them ideal for providing quick diagnostics, and for obtaining new intuitive insight.