Spitzer Space Telescope Observations of the Nucleus of Comet 103P/Hartley 2


الملخص بالإنكليزية

We have used the Spitzer 22-um peakup array to observe thermal emission from the nucleus and trail of comet 103P/Hartley 2, the target of NASAs Deep Impact Extended mission. The comet was observed on UT 2008 August 12 and 13, while the comet was 5.5 AU from the Sun. We obtained two 200-frame sets of photometric imaging over a 2.7-hour period. To within the errors of the measurement, we find no detection of any temporal variation between the two images. The comet showed extended emission beyond a point source in the form of a faint trail directed along the comets anti-velocity vector. After modeling and removing the trail emission, a NEATM model for the nuclear emission with beaming parameter of 0.95 +/- 0.20 indicates a small effective radius for the nucleus of 0.57 +/- 0.08 km and low geometric albedo 0.028 +/- 0.009 (1 sigma). With this nucleus size and a water production rate of 3 x 10^28 molecules s-1 at perihelion (AHearn et al. 1995) we estimate that ~100% of the surface area is actively emitting volatile material at perihelion. Reports of emission activity out to ~5 AU (Lowry et al. 2001, Snodgrass et al. 2008) support our finding of a highly active nuclear surface. Compared to Deep Impacts first target, comet 9P/Tempel 1, Hartley 2s nucleus is one-fifth as wide (and about one-hundredth the mass) while producing a similar amount of outgassing at perihelion with about 13 times the active surface fraction. Unlike Tempel 1, it should be highly susceptible to jet driven spin-up torques, and so could be rotating at a much higher frequency. Barring a catastrophic breakup or major fragmentation event, the comet should be able to survive up to another 100 apparitions (~700 yrs) at its current rate of mass loss.

تحميل البحث