Constraining Running Non-Gaussianity


الملخص بالإنكليزية

The primordial non-Gaussian parameter fNL has been shown to be scale-dependent in several models of inflation with a variable speed of sound. Starting from a simple ansatz for a scale-dependent amplitude of the primordial curvature bispectrum for two common phenomenological models of primordial non-Gaussianity, we perform a Fisher matrix analysis of the bispectra of the temperature and polarization of the Cosmic Microwave Background (CMB) radiation and derive the expected constraints on the parameter nNG that quantifies the running of fNL(k) for current and future CMB missions such as WMAP, Planck and CMBPol. We find that CMB information alone, in the event of a significant detection of the non-Gaussian component, corresponding to fNL = 50 for the local model and fNL = 100 for the equilateral model of non-Gaussianity, is able to determine nNG with a 1-sigma uncertainty of Delta nNG = 0.1 and Delta nNG = 0.3, respectively, for the Planck mission. In addition, we consider a Fisher matrix analysis of the galaxy power spectrum to determine the expected constraints on the running parameter nNG for the local model and of the galaxy bispectrum for the equilateral model from future photometric and spectroscopic surveys. We find that, in both cases, large-scale structure observations should achieve results comparable to or even better than those from the CMB, while showing some complementarity due to the different distribution of the non-Gaussian signal over the relevant range of scales. Finally, we compare our findings to the predictions on the amplitude and running of non-Gaussianity of DBI inflation, showing how the constraints on a scale-dependent fNL(k) translate into constraints on the parameter space of the theory.

تحميل البحث