On convex problems in chance-constrained stochastic model predictive control


الملخص بالإنكليزية

We investigate constrained optimal control problems for linear stochastic dynamical systems evolving in discrete time. We consider minimization of an expected value cost over a finite horizon. Hard constraints are introduced first, and then reformulated in terms of probabilistic constraints. It is shown that, for a suitable parametrization of the control policy, a wide class of the resulting optimization problems are convex, or admit reasonable convex approximations.

تحميل البحث