Exact and nonperturbative quantum master equation can be constructed via the calculus on path integral. It results in hierarchical equations of motion for the reduced density operator. Involved are also a set of well--defined auxiliary density operators that resolve not just system--bath coupling strength but also memory. In this work, we scale these auxiliary operators individually to achieve a uniform error tolerance, as set by the reduced density operator. An efficient propagator is then proposed to the hierarchical Liouville--space dynamics of quantum dissipation. Numerically exact studies are carried out on the dephasing effect on population transfer in the simple stimulated Raman adiabatic passage scheme. We also make assessments on several perturbative theories for their applicabilities in the present system of study.