Average and deviation for slow-fast stochastic partial differential equations


الملخص بالإنكليزية

Averaging is an important method to extract effective macroscopic dynamics from complex systems with slow modes and fast modes. This article derives an averaged equation for a class of stochastic partial differential equations without any Lipschitz assumption on the slow modes. The rate of convergence in probability is obtained as a byproduct. Importantly, the deviation between the original equation and the averaged equation is also studied. A martingale approach proves that the deviation is described by a Gaussian process. This gives an approximation to errors of $mathcal{O}(e)$ instead of $mathcal{O}(sqrt{e})$ attained in previous averaging.

تحميل البحث