A new framework for deriving equations of motion for constrained quantum systems is introduced, and a procedure for its implementation is outlined. In special cases the framework reduces to a quantum analogue of the Dirac theory of constrains in classical mechanics. Explicit examples involving spin-1/2 particles are worked out in detail: in one example our approach coincides with a quantum version of the Dirac formalism, while the other example illustrates how a situation that cannot be treated by Diracs approach can nevertheless be dealt with in the present scheme.