Using low-photon energy angle-resolved photoemission (ARPES), we study the low-energy dispersion along the nodal (pi, pi) direction in Bi(2)Sr(2)CaCu(2)O(8+delta) (Bi2212) as a function of temperature. Less than 10 meV below the Fermi energy, the high-resolution data reveals a novel kink-like feature in the real part of the electron self-energy that is distinct from the larger well-known kink roughly 70 meV below E_F. This new kink is strongest below the superconducting critical temperature and weakens substantially as the temperature is raised. A corollary of this finding is that the Fermi velocity, as measured over this energy range, varies rapidly with temperature - increasing by almost 30% from 70 to 110 K.