The process of stop-chargino production at LHC has been calculated in the Minimal Supersymmetric Standard Model at the complete electroweak one-loop level, assuming a mSUGRA symmetry breaking scheme. Several properties of the angular and invariant mass distributions of the basic bottom-gluon to stop-chargino amplitudes have been derived. For a meaningful collection of different benchmark points the overall electroweak one-loop effects are at most of the order of a few percent. At the realistically expected LHC accuracy, the main supersymmetric electroweak features of the process can be therefore essentially derived in this theoretical scheme from the simple Born level expressions.