Active Absorbing State Phase Transition Beyond Directed Percolation : A Class of Exactly Solvable Models


الملخص بالإنكليزية

We introduce and solve a model of hardcore particles on a one dimensional periodic lattice which undergoes an active-absorbing state phase transition at finite density. In this model an occupied site is defined to be active if its left neighbour is occupied and the right neighbour is vacant. Particles from such active sites hop stochastically to their right. We show that, both the density of active sites and the survival probability vanish as the particle density is decreased below half. The critical exponents and spatial correlations of the model are calculated exactly using the matrix product ansatz. Exact analytical study of several variations of the model reveals that these non-equilibrium phase transitions belong to a new universality class different from the generic active-absorbing-state phase transition, namely directed percolation.

تحميل البحث