Coarsening Dynamics of an Antiferromagnetic XY model on the Kagome Lattice: Breakdown of the Critical Dynamic Scaling


الملخص بالإنكليزية

We find a breakdown of the critical dynamic scaling in the coarsening dynamics of an antiferromagnetic {em XY} model on the kagome lattice when the system is quenched from disordered states into the Kosterlitz-Thouless ({em KT}) phases at low temperatures. There exist multiple growing length scales: the length scales of the average separation between fractional vortices are found to be {em not} proportional to the length scales of the quasi-ordered domains. They are instead related through a nontrivial power-law relation. The length scale of the quasi-ordered domains (as determined from optimal collapse of the correlation functions for the order parameter $exp[3 i theta (r)]$) does not follow a simple power law growth but exhibits an anomalous growth with time-dependent effective growth exponent. The breakdown of the critical dynamic scaling is accompanied by unusual relaxation dynamics in the decay of fractional ($3theta$) vortices, where the decay of the vortex numbers is characterized by an exponential function of logarithmic powers in time.

تحميل البحث