We propose a new global and fully inclusive variable sqrt{s}_{min} for determining the mass scale of new particles in events with missing energy at hadron colliders. We define sqrt{s}_{min} as the minimum center-of-mass parton level energy consistent with the measured values of the total calorimeter energy E and the total visible momentum vec{P}. We prove that for an arbitrary event, sqrt{s}_{min} is simply given by the formula sqrt{s}_{min}=sqrt{E^2-P_z^2}+sqrt{met^2+M_{inv}^2}, where M_{inv} is the total mass of all invisible particles produced in the event. We use tbar{t} production and several supersymmetry examples to argue that the peak in the sqrt{s}_{min} distribution is correlated with the mass threshold of the parent particles originally produced in the event. This conjecture allows a determination of the heavy superpartner mass scale (as a function of the LSP mass) in a completely general and model-independent way, and without the need for any exclusive event reconstruction. In our SUSY examples of several multijet plus missing energy signals, the accuracy of the mass measurement based on sqrt{s}_{min} is typically at the percent level, and never worse than 10%. After including the effects of initial state radiation and multiple parton interactions, the precision gets worse, but for heavy SUSY mass spectra remains 10%.