Lowering topological entropy over subsets


الملخص بالإنكليزية

Let $(X, T)$ be a topological dynamical system (TDS), and $h (T, K)$ the topological entropy of a subset $K$ of $X$. $(X, T)$ is {it lowerable} if for each $0le hle h (T, X)$ there is a non-empty compact subset with entropy $h$; is {it hereditarily lowerable} if each non-empty compact subset is lowerable; is {it hereditarily uniformly lowerable} if for each non-empty compact subset $K$ and each $0le hle h (T, K)$ there is a non-empty compact subset $K_hsubseteq K$ with $h (T, K_h)= h$ and $K_h$ has at most one limit point. It is shown that each TDS with finite entropy is lowerable, and that a TDS $(X, T)$ is hereditarily uniformly lowerable if and only if it is asymptotically $h$-expansive.

تحميل البحث