The unipolar and bipolar macroscopic quantum models derived recently for instance in the area of charge transport are considered in spatial one-dimensional whole space in the present paper. These models consist of nonlinear fourth-order parabolic equation for unipolar case or coupled nonlinear fourth-order parabolic system for bipolar case. We show for the first time the self-similarity property of the macroscopic quantum models in large time. Namely, we show that there exists a unique global strong solution with strictly positive density to the initial value problem of the macroscopic quantum models which tends to a self-similar wave (which is not the exact solution of the models) in large time at an algebraic time-decay rate.