Soft-lubrication effect on the lateral migration of a slightly deformed bubble rising near a vertical plane wall


الملخص بالإنكليزية

Deformation-induced lateral migration of a bubble slowly rising near a vertical plane wall in a stagnant liquid is numerically and theoretically investigated. In particular, our focus is set on a situation with a small clearance $c$ between the bubble interface and the wall. Motivated by the fact that experimentally measured migration velocity (Takemura et al. (2002, J. Fluid Mech. {bf 461}, 277)) is higher than the velocity estimated by the available analytical solution (Magnaudet et al. (2003, J. Fluid Mech. {bf 476}, 115)) using the Fax{e}n mirror image technique for $kappa(=a/(a+c))ll 1$ (here $a$ is the bubble radius), when the clearance parameter $epsilon(=c/a)$ is comparable to or smaller than unit, the numerical analysis based on the boundary-fitted finite-difference approach by solving the Stokes equation is performed to complement the experiment. To improve the understandings of a role of the squeezing flow within the bubble-wall gap, the theoretical analysis based on a soft-lubrication approach (Skotheim & Mahadevan (2004, Phys. Rev. Lett. {bf 92}, 245509)) is also performed. The present analyses demonstrate the migration velocity scales $propto{rm Ca} epsilon^{-1}V_{B1}$ (here, $V_{B1}$ and ${rm Ca}$ denote the rising velocity and the capillary number, respectively) in the limit of $epsilonto 0$.

تحميل البحث