We have simulated energy relaxation and equilibrium dynamics in Coulomb Glasses using the random energy lattice model. We show that in a temperature range where the Coulomb Gap is already well developed, (T=0.03-0.1) the system still relaxes to an equilibrium behavior within the simulation time scale. For all temperatures T, the relaxation is slower than exponential. Analyzing the energy correlations of the system at equilibrium, we find a stretched exponential behavior. We define a time tau_gamma from these stretched exponential correlations, and show that this time corresponds well with the time required to reach equilibrium. From our data it is not possible to determine whether tau_gamma diverges at any finite temperature, indicating a glass transition, or whether this divergence happens at zero temperature. While the time dependence of the system energy can be well fitted by a random walker in a harmonic potential for high temperatures (T=10), this simple model fails to describe the long time scales observed at lower temperatures. Instead we present an interpretation of the configuration space as a structure with fractal properties, and the time evolution as a random walk on this fractal-like structure.