In this paper we develop two mathematical models to predict the release kinetics of a water soluble drug from a polymer/excipient matrix tablet. The first of our models consists of a random walk on a weighted graph, where the vertices of the graph represent particles of drug, excipient and polymer, respectively. The graph itself is the contact graph of a multidisperse random sphere packing. The second model describes the dissolution and the subsequent diffusion of the active drug out of a porous matrix using a system of partial differential equations. The predictions of both models show good qualitative agreement with experimental release curves. The models will provide tools for designing better controlled release devices.
تحميل البحث