Environmental and genetic mutations can transform the cells in a co-operating healthy tissue into an ecosystem of individualistic tumour cells that compete for space and resources. Various selection forces are responsible for driving the evolution of cells in a tumour towards more malignant and aggressive phenotypes that tend to have a fitness advantage over the older populations. Although the evolutionary nature of cancer has been recognised for more than three decades (ever since the seminal work of Nowell) it has been only recently that tools traditionally used by ecological and evolutionary researchers have been adopted to study the evolution of cancer phenotypes in populations of individuals capable of co-operation and competition. In this chapter we will describe game theory as an important tool to study the emergence of cell phenotypes in a tumour and will critically review some of its applications in cancer research. These applications demonstrate that game theory can be used to understand the dynamics of somatic cancer evolution and suggest new therapies in which this knowledge could be applied to gain some control over the evolution of the tumour.