Separation of Equilibration Time-Scales in the Gradient Expansion


الملخص بالإنكليزية

We study thermalization by applying gradient expansion to the Kadanoff-Baym equations of the 2PI effective action to two-loop in a theory with Dirac fermions coupled to scalars. In addition to those chemical potentials which equilibrate in the on-shell limit, we identify modes which are conserved in this approximation, but which relax when off-shell effects are taken into account. This implies that chemical equilibration does not require higher loop contributions to the effective action and is compatible with the gradient expansion. We explicitly calculate the damping time-scales of both, on- and off-shell, chemical equilibration rates. It is shown that off-shell equilibration is suppressed by the thermal width of the particles in the plasma, which explains the separation of on- and off-shell chemical equilibration time-scales.

تحميل البحث