We derive the molecular properties for a sample of 301 Galactic HII regions including 123 ultra compact (UC), 105 compact, and 73 diffuse nebulae. We analyze all sources within the BU-FCRAO Galactic Ring Survey (GRS) of 13CO emission known to be HII regions based upon the presence of radio continuum and cm-wavelength radio recombination line emission. Unlike all previous large area coverage 13CO surveys, the GRS is fully sampled in angle and yet covers ~75 square degrees of the Inner Galaxy. The angular resolution of the GRS 46 allows us to associate molecular gas with HII regions without ambiguity and to investigate the physical properties of this molecular gas. We find clear CO/HII morphological associations in position and velocity for ~80% of the nebular sample. Compact HII region molecular gas clouds are on average larger than UC clouds: 2.2 compared to 1.7. Compact and UC HII regions have very similar molecular properties, with ~5K line intensities and ~4 km/s line widths. The diffuse HII region molecular gas has lower line intensities, ~3K, and smaller line widths, ~3.5 km/s. These latter characteristics are similar to those found for quiescent molecular clouds in the GRS. Our sample nebulae thus show evidence for an evolutionary sequence wherein small, dense molecular gas clumps associated with UC HII regions grow into older compact nebulae and finally fragment and dissipate into large, diffuse nebulae.