Random versus holographic fluctuations of the background metric. I. (Cosmological) running of space-time dimension


الملخص بالإنكليزية

A profound quantum-gravitational effect of space-time dimension running with respect to the size of space-time region has been discovered a few years ago through the numerical simulations of lattice quantum gravity in the framework of causal dynamical triangulation [hep-th/0505113] as well as in renormalization group approach to quantum gravity [hep-th/0508202]. Unfortunately, along these approaches the interpretation and the physical meaning of the effective change of dimension at shorter scales is not clear. The aim of this paper is twofold. First, we find that box-counting dimension in face of finite resolution of space-time (generally implied by quantum gravity) shows a simple way how both the qualitative and the quantitative features of this effect can be understood. Second, considering two most interesting cases of random and holographic fluctuations of the background space, we find that it is random fluctuations that gives running dimension resulting in modification of Newtons inverse square law in a perfect agreement with the modification coming from one-loop gravitational radiative corrections.

تحميل البحث