Generalization of the minority game to more than one market is considered. At each time step every agent chooses one of its strategies and acts on the market related to this strategy. If the payoff function allows for strong fluctuation of utility then market occupancies become inhomogeneous with preference given to this market where the fluctuation occured first. There exists a critical size of agent population above which agents on bigger market behave collectively. In this regime there always exists a history of decisions for which all agents on a bigger market react identically.