Extreme resistance of super-hydrophobic surfaces to impalement: reversible electrowetting related to the impacting/bouncing drop test


الملخص بالإنكليزية

The paper reports on the comparison of the wetting properties of super-hydrophobic silicon nanowires (NWs), using drop impact impalement and electrowetting (EW) experiments. A correlation between the resistance to impalement on both EW and drop impact is shown. From the results, it is evident that when increasing the length and density of NWs: (i) the thresholds for drop impact and EW irreversibility increase (ii) the contact-angle hysteresis after impalement decreases. This suggests that the structure of the NWs network could allow for partial impalement, hence preserving the reversibility, and that EW acts the same way as an external pressure. The most robust of our surfaces show a threshold to impalement higher than 35 kPa, while most of the super-hydrophobic surfaces tested so far have impalement threshold smaller than 10 kPa.

تحميل البحث