Coherent control of dressed matter waves


الملخص بالإنكليزية

By moving the pivot of a pendulum rapidly up and down one can create a stable position with the pendulums bob above the pivot rather than below it. This surprising and counterintuitive phenomenon is a widespread feature of driven systems and carries over into the quantum world. Even when the static properties of a quantum system are known, its response to an explicitly time-dependent variation of its parameters may be highly nontrivial, and qualitatively new states can appear that were absent in the original system. In quantum mechanics the archetype for this kind of behaviour is an atom in a radiation field, which exhibits a number of fundamental phenomena such as the modification of its g-factor in a radio-frequency field and the dipole force acting on an atom moving in a spatially varying light field. These effects can be successfully described in the so-called dressed atom picture. Here we show that the concept of dressing can also be applied to macroscopic matter waves, and that the quantum states of dressed matter waves can be coherently controlled. In our experiments we use Bose-Einstein condensates in driven optical lattices and demonstrate that the many-body state of this system can be adiabatically and reversibly changed between a superfluid and a Mott insulating state by varying the amplitude of the driving. Our setup represents a versatile testing ground for driven quantum systems, and our results indicate the direction towards new quantum control schemes for matter waves.

تحميل البحث