Effects of Strong Correlations on the Zero Bias Anomaly in the Extended Hubbard Model with Disorder


الملخص بالإنكليزية

We study the effect of strong correlations on the zero bias anomaly (ZBA) in disordered interacting systems. We focus on the two-dimensional extended Anderson-Hubbard model, which has both on-site and nearest-neighbor interactions on a square lattice. We use a variation of dynamical mean field theory in which the diagonal self-energy is solved self-consistently at each site on the lattice for each realization of the randomly-distributed disorder potential. Since the ZBA occurs in systems with both strong disorder and strong interactions, we use a simplified atomic-limit approximation for the diagonal inelastic self-energy that becomes exact in the large-disorder limit. The off-diagonal self-energy is treated within the Hartree-Fock approximation. The validity of these approximations is discussed in detail. We find that strong correlations have a significant effect on the ZBA at half filling, and enhance the Coulomb gap when the interaction is finite-ranged.

تحميل البحث