In science, one observes correlations and invents theoretical models that describe them. In all sciences, besides quantum physics, all correlations are described by either of two mechanisms. Either a first event influences a second one by sending some information encoded in bosons or molecules or other physical carriers, depending on the particular science. Or the correlated events have some common causes in their common past. Interestingly, quantum physics predicts an entirely different kind of cause for some correlations, named entanglement. This new kind of cause reveals itself, e.g., in correlations that violate Bell inequalities (hence cannot be described by common causes) between space-like separated events (hence cannot be described by classical communication). Einstein branded it as spooky action at a distance. A real spooky action at a distance would require a faster than light influence defined in some hypothetical universally privileged reference frame. Here we put stringent experimental bounds on the speed of all such hypothetical influences. We performed a Bell test during more than 24 hours between two villages separated by 18 km and approximately east-west oriented, with the source located precisely in the middle. We continuously observed 2-photon interferences well above the Bell inequality threshold. Taking advantage of the Earths rotation, the configuration of our experiment allowed us to determine, for any hypothetically privileged frame, a lower bound for the speed of this spooky influence. For instance, if such a privileged reference frame exists and is such that the Earths speed in this frame is less than 10^-3 that of the speed of light, then the speed of this spooky influence would have to exceed that of light by at least 4 orders of magnitude.