Let $H(p)$ be the set of 2-bridge knots $K$ whose group $G$ is mapped onto a non-trivial free product, $Z/2 * Z/p$, $p$ being odd. Then there is an algebraic integer $s_0$ such that for any $K$ in $H(p)$, $G$ has a parabolic representation $rho$ into $SL(2, Z[s_0]) subset SL(2,C)$. Let $Delta(t)$ be the twisted Alexander polynomial associated to $rho$. Then we prove that for any $K$ in $H(p)$, $Delta(1)=-2s_0^{-1}$ and $Delta(-1)=-2s_0^{-1}mu^2$, where $s_0^{-1}, mu in Z[s_0]$. The number $mu$ can be recursively evaluated.