Let $A$ be a self-adjoint operator on a Hilbert space $fH$. Assume that the spectrum of $A$ consists of two disjoint components $sigma_0$ and $sigma_1$. Let $V$ be a bounded operator on $fH$, off-diagonal and $J$-self-adjoint with respect to the orthogonal decomposition $fH=fH_0oplusfH_1$ where $fH_0$ and $fH_1$ are the spectral subspaces of $A$ associated with the spectral sets $sigma_0$ and $sigma_1$, respectively. We find (optimal) conditions on $V$ guaranteeing that the perturbed operator $L=A+V$ is similar to a self-adjoint operator. Moreover, we prove a number of (sharp) norm bounds on variation of the spectral subspaces of $A$ under the perturbation $V$. Some of the results obtained are reformulated in terms of the Krein space theory. As an example, the quantum harmonic oscillator under a PT-symmetric perturbation is discussed.