Low energy spin waves and magnetic interactions in SrFe$_2$As$_2$


الملخص بالإنكليزية

We report inelastic neutron scattering studies of magnetic excitations in antiferromagnetically ordered SrFe$_{2}$As$_{2}$ ($T_{N}=220$ K), the parent compound of the FeAs-based superconductors. At low temperatures (T=7 K), the spectrum of magnetic excitations $S(Q,hbar omega)$ consists of a Bragg peak at the elastic position ($hbar omega =0$ meV), a spin gap ($ Delta leq 6.5$ meV), and sharp spin wave excitations at higher energies. Based on the observed dispersion relation, we estimate the effective magnetic exchange coupling using a Heisenberg model. On warming across $T_{N} $, the low temperature spin gap rapidly closes, with weak critical scattering and spin-spin correlations in the paramagnetic state. The antiferromagnetic order in SrFe$_{2}$As$_{2}$ is therefore consistent with a first order phase transition, similar to the structural lattice distortion.

تحميل البحث