We demonstrate that porous fibers have low effective material loss over an extended frequency range, 4.5 times larger bandwidth than that can be achieved in sub-wavelength solid core fibers. We also show that these new fibers can be designed to have near zero dispersion for 0.5-1 THz resulting to overall less terahertz signal degradation. In addition, it is demonstrated that the use of asymmetrical sub-wavelength air-holes within the core leads to high birefringence ~0.026. This opens up the potential for realization of novel polarization preserving fibers in the terahertz regime.