Market dynamics after large financial crash


الملخص بالإنكليزية

The model describing market dynamics after a large financial crash is considered in terms of the stochastic differential equation of Ito. Physically, the model presents an overdamped Brownian particle moving in the nonstationary one-dimensional potential $U$ under the influence of the variable noise intensity, depending on the particle position $x$. Based on the empirical data the approximate estimation of the Kramers-Moyal coefficients $D_{1,2}$ allow to predicate quite definitely the behavior of the potential introduced by $D_1 = - partial U /partial x$ and the volatility $sim sqrt{D_2}$. It has been shown that the presented model describes well enough the best known empirical facts relative to the large financial crash of October 1987.

تحميل البحث