New constraints on H_0 and Omega_M from SZE/X-RAY data and Baryon Acoustic Oscillations


الملخص بالإنكليزية

The Hubble constant, $H_0$, sets the scale of the size and age of the Universe and its determination from independent methods is still worthwhile to be investigated. In this article, by using the Sunyaev-Zel`dovich effect and X-ray surface brightness data from 38 galaxy clusters observed by Bonamente {it{et al.}} (2006), we obtain a new estimate of $H_0$ in the context of a flat $Lambda$CDM model. There is a degeneracy on the mass density parameter ($Omega_{m}$) which is broken by applying a joint analysis involving the baryon acoustic oscillations (BAO) as given by Sloan Digital Sky Survey (SDSS). This happens because the BAO signature does not depend on $H_0$. Our basic finding is that a joint analysis involving these tests yield $H_0= 0.765^{+0.035}_{-0.033}$ km s$^{-1}$ Mpc$^{-1}$ and $Omega_{m}=0.27^{+0.03}_{-0.02}$. Since the hypothesis of spherical geometry assumed by Bonamente {it {et al.}} is questionable, we have also compared the above results to a recent work where a sample of triaxial galaxy clusters has been considered.

تحميل البحث