The transport properties of carriers in semiconducting graphene nanoribbons are studied by comparing the effects of phonon, impurity, and line-edge roughness scattering. It is found that scattering from impurities located at the surface of nanoribbons, and from acoustic phonons are as important as line edge roughness scattering. The relative importance of these scattering mechanisms varies with the temperature, Fermi level location, and the width of the ribbons. Based on the analysis, strategies for improvement of low-field mobility are described.